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I. INTRODUCTION

The problem to be discussed arises in the application of high
powered lasers to the attainment of controlled thermonuclear reac-
tions, CTR. In the theoretical development of this area Steinhauer
and Ahlstrom® considered the problem of heating a one-dimensional non-
uniform plasma with a laser. This study elucidated the parameters and
the fundamental character of the heating phenomena in a stationary
plasma. The term stationary plasma refers to the limit in which the
duration of the laser pulse is much shorter than the acoustic time
based on the length of the plasma heated and its final temperature.

Dawsonz, Kidder®, and Hertzberg“ have proposed the use of a long

wavelength gas laser to heat large volumes of plasmas which are mag-
netically confined. Recent developments of high power pulsed CO2
lasers® with A = 10.6u show that gas laser development is becoming
competitive with the solid state lasers in the production of high
energy pulses. The significant advantage in using the long wavelength
as first pointed out by Dawson, is that the laser energy can be absorb-
ed by plasmas at densities which can be confined in magnetic fields
that are currently feasible. Vlases and Ahlstrom® have studied the
thermodynamic, the absorption, and the refraction problems associated
with using a long wavelength laser pulse to heat a long magnetically
confined DT. A necessary condition for the application of the laser
is the absorption of the radiation. The inverse bremsstrahlung
mechanism has been extensively studied’?®’® and in addition nonlinear
and resonance phenomena'!’!? have been examined. Thus, the necessary
condition of the absorption of the radiation has been studied essen-
tially independent of the geometry of the plasma.
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General Refraction Problem

When the geometry of a particular scheme is investigated it be-
comes obvious that refraction effects can play a dominant role. The
density gradients in the plasma may refract the radiation out of the
plasma before it has traveled far enough to be absorbed. The equation
for the index of refraction in a gas composed of atoms, ions, and
electrons is

P14+ ® KAV Do + K+ KA Dn, - 4.5 x 10 220 A°
o o o i i i e

where n, . ; ~ cm ® and A ~ microns. This equation applies when the
frequency (& is much greater than the plasma frequency wp and the cyclo-
tron frequency. For A > 0.5U and a typical gas the contribution to the



atoms and the ions can be combined so that

px14 107

a(n +n.) - 4.5 % 10" %%n AZ
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Thus it is clear that for A > 0,50 and ionization greater than 10%
that # - 1 < 0 where as for an un-ionized gas i - 1 > 0. Therefore,
in an un-ionized gas the refraction deflects the beam towards the high-
er density but in a fully ionized plasma the index of refraction decreases
with increasing density so the refraction deflects the beam towards the
lower density. Since all plasmas have ng * 0 at their boundaries, re-
fraction could play a dominant role in the application of laser radiation
to the production of CTR.

The simple equation relating the radius of curvature of a ray, R,
to the index of refraction gradient is

l_sina rad 1 |

R 3 g
where 0 is the angle between the ray and the direction of grad fi. It
is particularly interesting to note that R -+ 0 at the plasma critical
density, i.e., where the laser frequency equals the plasma frequency.
For most laser heated plasmas, the maximum density, Py, will be greater
or equal to the critical density, pPc.

In this paper only the problem of a cylindrical plasma with
azimuthal symmetry irradiated in the axial direction is discussed. The
results developed here indicate effects that would be important in
other geometries as well, and the general trends can be carried over.

Unfavorable Density Profile

The most obvious geometry where p(r) is parabolic with ppgax at
r = 0 is considered first. The refraction effects are detrimental be-
cause of the unfavorable density gradient. It is shown that heating
this type of plasma is very difficult due to the refraction losses.

If the incident laser beam is focused then it is shown that there
exists a solution where the laser beam can be made to propagate indefi-
nitely even in an unfavorable density gradient. Realistically some
deviation from the ideal case would occur in practice. When a realis-
tic deviation is allowed then it is shown that the propagation distance
is improved by a factor of approximately three over the unfocused case.

Favorable Density Profile
The other possibility which exists is that the laser beam is

propagated in a region where the density gradient is favorable, i.e.,
leads to self focusing. It is shown that for a favorable density



variation a parallel incident beam is trapped as in a light pipe.
Solutions for the wave fronts in a parabolic density profile are pre-
sented. These solutions based on geometrical optics show that the
wave fronts are a series of ellipsoids which collapse into a filament
on the axis, then expand outward, turn around and collapse into a
filament again, with the process being repeated over and over. During
this process envelopes of the wave fronts, caustics, are formed during
each collapse phase.

There are a number of ways in which such a density profile could
be produced. Two possible approaches are considered in this paper.
For example, if a dynamic pinch is used to create the initial plasma
then the laser energy addition could be accomplished during the col-
lapse phase of the pinch. A second approach would be to use a low
energy laser pulse to modify an initial unfavorable density distribu-
tion so that there is a density minimum along the axis. A one
dimensional perturbation solution is presented which shows how the
density distribution of a plasma would be affected by a small energy
addition over times longer than an acoustic time based on the diameter
of the plasma. This solution shows that it may indeed be feasible to
use a tailored laser pulse so that large amounts of energy could be
added to the plasma.

Finally it is shown that in a light pipe configuration of the
plasma the effective absorption length of the plasma can be reduced
by as much as an order of magnitude or more.

IT. DEFOCUSING IN A PARABOLIC DENSITY PROFILE

The geometry considered is a long cylindrical plasma column with
azimuthal symmetry and a density maximum on the axis with a monotonic
decrease of the density in the radial direction. A laser beam is in-
cident on the plasma column in the axial direction where it is assumed
that the diffraction effects can be neglected and the laser beam is in
the TEMpp mode with the intensity distribution approximated by a
parabola. The general configuration is shown in figure (1). It is ac-
curate to use geometrical optics as long as the plasma density is less
than the critical density and caustics are not generated. The equa-
tions for the intensity and the absorption must be modified near the
critical density and caustics if the details are desired in these
localized regions.

The Eikonal equation for a cylindrically symmetric geometry is

1 _ ,ou,2 du, 2
)y G2 *t &GP
where u corresponds to time and ¢ 1is the phase velocity. This
equation can be reduced to a differential equation for the rays
_dzr dr, 2 de _
CHZ + [ 1+ (dx) ] ar - 0 (1)



where the two boundary conditions are that

r(0) = T,

(2)
dr

The integration of equation (1) leads to the ray equation

r cdr
X = g [ c*(ry)-c* 17/ (3)

r
o

The phase veleocity is given by

c=c(1- 7Y,

u)2

where co is the speed of light in a vacuum and 7 = —Rz =;Q— , the ratio
) c

of the density of the plasma to the critical density for the particular

laser wave length. Thus equation (3) becomes

r dr

= I
R N “

o

where CO = C(ro) and ¢ = g(r).

Now in order to evaluate the integral in equation (4), a parabolic
density variation is assumed.

c=g [1-ad | (5)

0 = 1 corresponds to ( 0 at the edge of the plasma, r = a; and
o < 1 corresponds to g = (l—a)Cm at r = a. Thus, for o < 1 the density
profile is flatter as shown in figure (2).

The ray equation, (4), using (5) reduces to

g 1/
I = cosh { ] = ] ‘ } (6)
Lo a 3 - Zn (1 -oa roz/a )

Equation (6) can then be used to determine the distance that the laser
beam propagates along the column. A measure of this distance is the
value of x for which one half the laser beam energy has left the plasma




column, x3 2 * Figure (3) shows the variation of x1/2/a with o for
three values of Ty . For each of the values of Ty a value of the ab-
sorption length for A = 10.6 1 and Te = 10 KeV is also given. It is
clear that the radius of the plasma would have to be very large for any
significant portion of the energy to be absorbed at 10 KeV and that o
should be very small.

It should be also be pointed out that the case o < 1 could be con-
sidered as a full parabolic plasma profile, o = 1, with a smaller dia-
meter laser beam D, . For example, if Dp is the plasma diameter then
DL/DP =17 corresponds to O 2 1714 and DL/DP = 1/1¢ corresponds to
o2 Y00 . As long as the characteristic thermal conduction time in the
lateral direction is much less than the longitudinal acoustic time, the
whole plasma column would be heated.

Finally, for this case it is straightforward to make ‘a perturbatlon
calculation of the percentage of the energy absorbed at any given tempera-
ture. Figure (4) shows that for a GOz laser and temperatures greater than
100 eV a significant fraction of the energy is not absorbed and at 10 KeV
the percentage absorbed is negligible. These calculations were done for a

= 1.0 cm and o = 0.10. For larger plasma diameters and smaller values of
a the picture would of course be more favorable.

I1T. FOCUSED LASER BEAM

Now suppose for the parabolic density profile, the incident laser
beam is focused by a lens such that in the absence of the plasma the
focal point would be at x = b as shown in figure (5). Before solving
this case two limits are obvious. If b/a - © then this is the unfocused
case discussed in the previous section. If b/a - O then the radiation
will traverse the plasma column and go out the other side. Solutions
for finite values of b/a should give increased propagation distances; in
fact it would seem reasonable to search for a solution such that the radi-
ation is trapped.
The boundary conditions are now
r(0) = r,
r

dr 0

The solution for this case has three forms:

X _ ) { sinh” —%r - sinh ! "o }fr82>0 (8)
a—' sSin E.-I_B_l_ sin EI—BT [s}

X r o 2

-; =y { 1in ; - 1n —a } for 8 =0 €))
2oy cosh--1 I __ _ cosh! T } for 82 <0 (10)
a_ V7 aIBI a]Bl



where
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For 82 > 0 the ray paths are overfocused so that they cyoss over the
axis and exit from the plasma gn the other side. For B~ < 0 the ray
paths are underfocused. For B = 0 all the ray paths approach the axis
asymptotically. This condition then requires

b®
2

Q|+

(%——1) (11)
a m

It should be noted that in heating a plasma, this type of solution would
would only be useful if the characteristic thermal conduction time in
the lateral direction is much less than the longitudinal acoustic time
so that the whole plasma is heated.

As a practical matter it would be impossible to satisfy equation (11)
exactly., Thus it is of interest to examine the effect of an error in e.g.
0 . Equations (8) and (10) give

l2 _ in const.
a |a—ac]

where g, is the correct value for equation (11) to be satisfied. It is
easily seen that only a small error in specifying o leads to values

Xy 2/a close to those obtained in the unfocused case. Figure (6) shows
thé variation of xl/z/a vs o for a-a, = 0.100. and 0.0lc.

IV. REFRACTION IN A FAVORABLE DENSITY PROFILE

It is clear that if the density profile has a minimum the rays will
be refracted into this region. It may even be possible to trap the rays
in a minimum density region. The configuration considered is the same as
that of Section IT except now it is assumed that a density minimum exists.



In this case it is both convenient and interesting to use the equations
in their characteristic form so that

ar 2 s

= = i'z; [ &) - &) 12 (12)
and

dx _ 2 1y

R (13)

o

Consider the density variation shown in figure (7). From equation (12)
it is clear that any ray entering the column with r, pS T, S r, and

dr/dx (0) = O will be trapped in this minimum region. Such a configura-
tion could then be called a "light pipe" since the light is trapped in
the plasma column. -

In order to study the behavior of the radiation in a minimum region
in more detail, it is instructive to assume a specific density profile
and solve equations (12) and (13) for the ray paths and the wave fronts.
The density variation chosen is

2
tx) =g +(1-¢2 ) (%) (14)

This is a parabolic curve with Zpj, at r = 0 and T = 1.0 or p = p, at
r = a. The radius of the laser beam is again assumed to be equal to a.
The equation for the rays is then

r=r1r cos [ x/a 1 (15)
° 2, 2.1/,
(t-r /a”)

and the equation for the wave fronts is

2 2
1 = (X/g) + (x/a) 5 (16)
{e) (cos 0O)
1
2s (- ) /2
where 0 = P . Note that s ~ time. The general proof has
o

already shown that all the rays would be trapped in this case which is
confirmed by equation (15). For this parabolic density profile all the
rays are cosine functions where the wave length of the oscillating rays
goes to zero as ro > a. The wave fronts are ellipsoids where the initial



manifold is the plane x = 0, r £ a. The longitudinal axis of the ellip-
tical wave front grows linearly with time and the length of the radial
axis oscillates with time. Several characteristic wave fronts are shown
in figure (8). The wave fronts alternately collapse and expand in the
favorable density variation region. This behavior leads to a series of
envelopes or caustics and filaments along the axis where according to
geometrical optics infinite intensities would be produced. The geometry
of the caustics is shown in figure (9).

V. CREATION OF THE FAVORABLE DENSITY PROFILE

There are many ways in which the favorable density profile could be
generated. The collapse phase of a pinch type device and the use of se-
lective volume heat addition are discussed. In reference 6 it has been
suggested that the laser heating of a dense, relatively cold O-pinch
plasma is a very attractive possibility for the production of CTR. The
8-pinch produces a quasi-static plasma with an unfavorable density profile.
However, if the laser were fired into the O-pinch just before the implo-
sion, the density profile would then be like the solid line in figure (10).
This is a favorable profile, having a strong density minimum on the axis.
Hence the laser beam would be trapped and remain in the plasma. However,
such an approach would require a laser pulse shorter than the time for
the imploding wave to collapse through a distance equal to the radius of
the beamn.

If the laser were fired into the O-pinch just after the implosion,
then the density profile would correspond to the reflected shock from the
implosion. This density profile is shown as the dashed line in figure
(10). This approach would require that the duration of the laser pulse
be less than the propagation time of the reflected shock wave across the
plasma.

Another approach which is very promising is to modify an existing
unfavorable density profile by some mechanism of selective volume energy
addition. The added energy would produce a pressure imbalance that could
lead to redistribution of the plasma and a favorable density profile for
trapping the laser beam. The obvious means of depositing the emergy is
the laser, but it has just been shown that the laser beam is quickly re—
fracted out of the plasma column for any value of { of practical interest
for fusion. However, it should be noted that a massive redistribution of
the density can be achieved by doubling the plasma energy. If the initial
temperature is 100 eV then this represents only 17 of the energy required
to achieve 10 KeV. If the heating from 100 eV to 200 eV were done in a
way that  produces a favorable density profile, then the remainder of the
heating (to 10 KeV) could be done very efficiently, since there would be
no refraction losses. Inefficiencies in the heating to 200 eV could be
tolerated since this represents only 17 of the total energy required.



Figure (3) shows that if the initial plasma column has Ne oo

= 5x 10'%/cm® and @ = 0.10 then for a CO, laser, A = 10.6), one half
the laser beam would have left the column in three plasma radii. How-

ever, if u = 1.06 corresponding to a Nd* laser then x'/, 100

Figure (11) shows that 80% of the energy from the Ndt+ laser pulse would
be absorbed. Therefore the heating could be done with two laser pulses,
a small energy short duration 1.06u pulse to tailor the density profile
and a large energy 10.6)t pulse to achieve the final temperature.

An estimate of the energy required for the demnsity tailoring can be
made by examining the density profile created by a cylindrical laser beam
in a uniform plasma. The case where Op/po << 1 was studied by Rafser.!?
Based on his work, it can be shown that for laser pulses longer than the
time for an acoustic wave to traverse the beamn, tpcS/a >> 1, the density
change is given by

J /A

80 _ 1.73 x 10° -2 t (- i), (17)
60 Te5/2 vo-1 Imax

where I(r) is the beam intensity profile, and Ipsx is the maximum in-
tensity. Here it has been assumed that the absorption length is long
compared to the radius of the beam, and linearized fluid mechanics is
used to evaluate the motion. The density profile that would be produced
by a laser beam with a parabolic intensity prefile is shown in figure (12).
For practical values, e.g., Jo = 1 joule at 1.06u, A = 3 mm?, 7 = 1/, and
Te = 102 eV; then 8p/po = 0(1). This calculation is valuable only as an
order of magnitude estimate but it does indicate that a sizable density
"hollow" can be produced by a moderately small laser pulse.

It is interesting to note that once a favorable density profile has
been produced the additional energy absorption due to an incident
Gaussian laser beam will continue to push mass towards the outer edge of
the beam. This problem is very similar to the thermal blooming problem!**!5
which is experienced in the propagation of a laser beam through the atmos-
phere. The fundamental and convenient difference is that in the case of a
fully ionized plasma the laser beam is trapped because n - 1 ~ -ng.

V1. ABSORPTION LENGTH WITH A FAVORABLE DENSITY PROFILE

It is of interest to compare the absorption length in a uniform plasma
to the absorption length in the plasma with a favorable demnsity profile.
Naturally, the absorption length in the "light pipe" is not a clearly de-
fined quantity. The rays of the laser beam that enter the central region
where the density is lowest will experience weaker absorption than those
rays which enter near the periphery - at a higher demsity. Furthermore,
all rays which do not enter at the density minimum will oscillate back and



and forth across the plasma as they move down its length. Thus, at any
point in the column one finds a strange conglomeration of rays, whose
intensity has been damped by widely varying amounts, and whose position
seems to have no relationship to the origin of the rays.

The appropriate way to measure an "effective" absorption length for
such a plasma is to calculate how the overall laser power diminishes in
moving down the plasma column. The approach is to find first how each
bundle of rays has diminished in intensity. Consider an annular bundle
of rays of equal intensity.

dW(x,7p) = I(x,) + 2mr dr_ exp{ - ¥ Kr(x,r )]ds}

Where dW(x,ry) is the power at x of the radiation that entered the
plasma between the circles r = ry and r = ry + drg. I(rp) is the in-
tensity profile of the laser; K(r) is the absorption coefficient, and

ds is an incremental distance along the ray which began at rgy. The total
power in the cross section at x is found by integrating dW over all r,.

W(x) = 2w Ii I(ro) - exp [- I§ Kds] rodr0 (18)

The effective absorption length can be calculated by performing the
integral (18) for a particular density profile. Weak oscillatory terms
will arise in the calculation of W(x) but these should be neglected giv-
ing W(x). The effective absorption length is then given by

1 - (i (x )/dw"‘)> (19)

ef x=0

Calculation of L¢ff/cyT was performed for the favorable parabolic density
equation (14) using two different intensity profllesi I(ry) ~ l - (x/a)?

which approximates the TEMyg mode, and I(ro) ~ (r/a)“[1- (r/a) ] which ap-
proximates the TEM 00401 mode. cg is the speed of light in a vacuum and T

is the electron-ion collision time. The results are presented in figure
(13) where they are compared to the absorption length in a uniform plasma
at a density equal to the minimum density of the favorable profile. It
is seen that there is a significant enhancement of the absorption length.
In fact there is an actual maximum absorption length which occurs approxi-
mately when the minimum density is half the critical density. There is at
least an order of magnitude decrease in the absorption length for all
densities less than about 0.4 of the critical density.

Thus, it is seen that the light pipe not only traps the laser radia-
tion, but reduces the absorption lengths considerably from the often
inconveniently long lengths which arise in a uniform density plasma.

10



VII. SUMMARY AND CONCLUSIONS

The problem of propagating a laser beam along a long cylindrically
symmetrical column of fully jonized plasmas has been considered using
geometrical optics. TFor the case where the density has a maximum on the
axis and decreases monotonically in the radial direction the ray paths
are refracted out of the plasma column. The solutions show that it is
very difficult to heat a long plasma column with this unfavorable density
profile. By focusing the incident laser beam it is theoretically possible
to keep the light from being refracted out of the plasma column. However,
this solution can be compared to finding a neutral stability point in the
middle of an unstable region. So that any deviation leads to a very
rapid refraction of the laser beam out of the plasma.

A "light pipe" effect is found if there is a density minimum. For
the general case of a density minimum it is shown that a parallel incident
beam is trapped by the plasma column. A special case where the density
variation is parabolic is considered, and the solution shows that the
wave fronts are a series of ellipsoids which first collapse into a fila-
ment on the axis, then expand out against the increasingly depnsity, then
reflect and again collapse into a filament on the axis. This process is
repeated over and over again until the energy is either absorbed or is
propagated out the end of the plasma column. During each collapse phase
of the propagation, envelopes of the wave fronts are formed where the
intensity becomes very large. The intensity is also very large in the
filaments on the axis. The use of geometrical optics in these localized
regions is not correct for calculating either the intensity or the absorp-
tiom.

Finally it is shown that for the "light pipe" solutions there is a
significant decrease in the effective absorption length due to the rays
oscillating back and forth across the plasma. It is clear from these
solutions that there are very significant advantages to the light pipe
configuration for the production of a thermonuclear plasma.

These studies are very encouraging and dictate the desirability
and the necessity of the additional studies which are proceeding.
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